Modularized Multilevel and Z-source Power Converter as Renewable Energy Interface for Vehicle and Grid-connected Applications

نویسنده

  • Dong Cao
چکیده

MODULARIZED MULTILEVEL AND Z-SOURCE POWER CONVERTER AS RENEWABLE ENERGY INTERFACE FOR VEHICLE AND GRID-CONNECTED APPLICATIONS By Dong Cao Due the energy crisis and increased oil price, renewable energy sources such as photovoltaic panel, wind turbine, or thermoelectric generation module, are used more and more widely for vehicle and grid-connected applications. However, the output of these renewable energy sources varies according to different solar radiation, wind speed, or temperature difference, a power converter interface is required for the vehicle or gridconnected applications. Thermoelectric generation (TEG) module as a renewable energy source for automotive industry is becoming very popular recently. Because of the inherent characteristics of TEG modules, a low input voltage, high input current and high voltage gain dc-dc converters are needed for the automotive load. Traditional high voltage gain dc-dc converters are not suitable for automotive application in terms of size and high temperature operation. Switched-capacitor dc-dc converters have to be used for this application. However, high voltage spike and EMI problems exist in traditional switchedcapacitor dc-dc converters. Huge capacitor banks have to be utilized to reduce the voltage ripple and achieve high efficiency. A series of zero current switching (ZCS) or zero voltage switching switched-capacitor dc-dc converters have been proposed to overcome the aforementioned problems of the traditional switched-capacitor dc-dc converters. By using the proposed soft-switching strategy, high voltage spike is reduced, high EMI noise is restricted, and the huge capacitor bank is eliminated. High efficiency, high power density and high temperature switched-capacitor dc-dc converters could be made for the TEG interface in vehicle applications. Several prototypes have been made to validate the proposed circuit and confirm the circuit operation. In order to apply PV panel for grid-connected application, a low cost dc-ac inverter interface is required. From the use of transformer, two different solutions can be implemented, non-isolated or isolated PV inverter. For the non-isolated transformer-less solution, a semi-Z-source inverter for single phase photovoltaic systems has been proposed. The proposed semi-Z-source inverter utilizes only two switching devices with doubly grounded feature. The total cost have been reduced, the safety and EMI issues caused by the high frequency ground current are solved. For the transformer isolated solution, a boost half-bridge dc-ac micro-inverter has been proposed. The proposed boost half-bridge dc-dc converter utilizes only two switching devices with zero voltage switching features which is able to reduce the total system cost and power loss.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of the new multilevel current source converter to grid connected applications

A novel current source multilevel inverter is introduced in this paper which is an appropriate alternative to be employed for low/medium power applications. the proposed converter is formed basic modules which paralleling these modules increse output current levels and improve quality of injected current to load or grid. in order to validate advantages of proposed converter versus the several m...

متن کامل

Novel application of hybrid Perovskite materials in grid-connected photo-voltaic cells

In this paper, the novel application of organic/inorganic perovskite hybrid materials isproposed for grid-connected Photo-voltaic (PV) cells. The perovskite hybrid cells attracted a lot of interest due to their potential in combining advantages of both components. Looking to the future, there is no doubt that these new generations of hybrid materials, born from the very fruitful activitie...

متن کامل

A New Structure of Buck-Boost Z-Source Converter Based on Z-H Converter

In this paper, a new structure for buck-boost Z-source converter based on Z-H topology is proposed. The proposed converter consists of two LC networks similar to the conventional Z-source and Z-H converters. One of the characteristics of the proposed structure is that, without any changing in its’ power circuit, it can be used in different conversions such as dc/dc, dc/ac and ac/ac. This unique...

متن کامل

A Soft Switched DC-DC Boost Converter for Use in Grid Connected Inverters

This paper presents a soft-switching DC-DC boost converter, which can be utilized in renewable energy systems such as photovoltaic array, and wind turbine connections to infinite bus of a big power network, using grid connected inverters. In the proposed topology for the DC-DC boost converter, the main and the auxiliary power switches are turned on and turned off with zero voltage switching (ZV...

متن کامل

Grid Integration of a Single-Source Switched-Capacitor Multilevel Inverter with Boosting Capability

This paper investigates the connection of a single-phase multilevel inverter structure to an existing power grid. The applied voltage source inverter is able to generate a near sinusoidal voltage waveform with an amplitude six times the input voltage by using a single DC input power supply. A proportional-resonant (PR) controller regulates the injected current into the grid. While the EPLL is u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012